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E V O L U T I O N  OF D I S S I P A T I V E  S T R U C T U R E S  

IN T H E  F L O W  P R O C E S S  OF C R O S S - L I N K E D  P O L Y M E R S  

G. V. Kozlov, V. A. Beloshenko, and Varyukhin UDC 539.3:541.64 

The behavior of a deformable solid body under mechanical action is determined by the  processes of 
formation and evolution of dissipative structures (DS), which ensure optimum conditions for the dissipation 
of energy coming from outside [1, 2]. For metals, this approach is generally recognized, although there is 
no consensus on the mechanism of structural reorganization [3]. For polymers, this problem has not been 
studied, although the presence of DS in them has been discussed [4]. At the same time, its solution will 
make it possible to approach polymer deformation from the viewpoint of the fundamental physical principles 
of nonequilibrium thermodynamics [5]. These principles can be applied if a quantitative structural model is 
available. For cross-linked polymers, such a model could be the cluster model of their amorphous state in 
[6, 7], which identifies quantitatively a local order whose regions are DS. This paper deals with the evolution 
of DS (cluster structure) in the flow process using, as an example, epoxy polymers as a typical representative 
of this class of materials. 

We studied two series of samples obtained by hardening of ]~D-22 epoxy oligomer by means of 
isomethyltetrahydrophthalic anhydride with a varied hardener-oligomer ratio/(st  in moles (equivalents). The 
samples of the first series (]~P-1) were tested immediately after preparation, and those of the second (]~P-2), 
after their natural aging under atmospheric conditions for 3 years. The conditions of preparation of samples 
and" test methods are described in [8]. The structural parameters were calculated according to [6, 7]. 

The model of [6, 7] assumes that the structure of amorphous polymers consists of regions of local 
order (dusters) surrounded by a loosely packed matrix. Each cluster consists of several coUinear segments of 
different m~cromolecules whose length is assumed to be ~qual to that of a statistical segment Is. Thus, the 
cluster is an analog of a crystallite with elongated chains (CEC). At the same time, each cluster is regarded 
as a multifunction node of a fluctuation grid of macromolecular entanglements with density Vh. With this 
interpretation, the quantity Vh has another physical meaning: the number of segments in the clusters per 
polymer unit volume, i.e., it can serve as an indicator of the degree of local order. 

Figure 1 presents the dependences of the cluster grid density in the undeformed state Vh (,points 1 and 2) 
and after flow Vhfh (points 3 and 4) on the hardener-oligomer ratio Kst for the compositions EP-1 (points 1 
and 3) and I~P-2 (points 2 and 4). In Figs. 1-4, curves are used to approximate dependences obtained as 
sets of the corresponding points. From the data in Fig. 1 it follows that aging leads to an increase in Vh. 
This agrees well with the concept of the aging process as the transition to a more stable state with closer 
molecular packing [9]. The maximum increase in Vh is observed in compositions that are the most different 
from stoichiometry, which makes it possible to consider their structure the farthest from equilibrium. 

The flow process in amorphous linear polymers has been shown [10] to occur when the effective Poisson 
ratio pf _~ 0.41. Assuming that this conclusion is valid for the polymers discussed and using the relationship 
between p and Vh obtained in [11], we calculated ~ for the flow limit crf. The obtained values are given in 
Fig. 1. The values of ~ are independent of/(st  and practically coincide for ]~P-1 and l~P-2, and this is due 
to the initial choice of #f. At the same time, they are markedly lower than those of Vh. This means that 
decay of a certain number of DS clusters is required to realize flow in cross-linked polymers. This situation 
is diametrically opposite to metal deformation processes, in which, on the contrary, formation of DS of 
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dislocation substructures [2, 5] is observed. This difference is fundamental and due to different concepts of 
ideal (defectless) structures of the materials compared [12]. 

It should be expected that  the above structural changes will determine the parameters characterizing 
flow in cross-linked polymers. We consider it, taking, as an example, the flow deformation ~f. It is natural 
to assume that  the greater the number of DS that  decay in flow, the larger the value of el. This number of 
DS can be determined as the difference between the cluster grid densities before flow Vh and after it V~h , i.e., 
AVh = Vh - vhfh, which can be readily found from the graphs in Fig. 1. The inset in Fig. 2 gives the correlation 
ef (AVh), which confirms the assumption made. 

Polymer structure can be represented as a fractal with dimension df [2, 10]: 

df = ( d -  1)(1 + it). (1) 

Here, d is the dimension of Euclidean space in which the fractal ;s imbedded (for the case in question, obviously, 
d = 3);/z is Poisson's ratio, which is found from the results of mechanical tests using the relation [13] 

a f / E  = (1 - 2~t)/6(1 + #), (2) 

where af is the flow limit and E is the modulus of elasticity. 
Figure 2 shows the dependence of ef on the difference Ady L,'~tween fractal dimensions for EP-1 and 

l~P-2 (points 1 and 2) prior to and after the flow, which is calculated by formulas (1) and (2). The observed 
linear correlation -el (Ady) again indicates that  the value of Cf is determined by the evolution of DS in the 
flow process. 

The stability of a solid body against shear deformation is a fundamental  property and can be expressed 
in terms of the indice~ m and n of the well-known Mie equation as 1/mn [2]. In turn [13], 

1~ran = (1 - 2#)/6(1 + #). (3) 

The relationship between ef and the parameter  1~ran calculated from Eq. (3) for l~P-1 and l~P-2 (points 1 
and 3) is linear and is extrapolated to the coordinate origin (Fig. 3); hence the flow process is the loss of 
stability of the polymer as a system [2]. 

The cluster model [6, 7] implies that  the structure of an amorphous polymer contains two types of 
clusters (DS): stable clusters, which consist of a large number of segments, and unstable clusters, which contain 
a small number of segments and retain the loosely packed matrix in the glassy state. The number of segments 
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in a cluster can be estimated by means of its functionality F,  which is equal to the number of chains emerging 
from the cluster. Since the latter is an analog of a CEC [6], it is obvious that the number of segments in one 
cluster is equal to F/2. 

A characteristic feature of DS is the existence of a hierarchy of spatial scales [3]. Their relationship for 
adjacent structural levels can be described by the expression [3] 

Li+t/Li = hi -= 2 (1 - #)1(1 _2 2/~). (4) 

Here Li and Li+l are the linear scales of the DS of the ith and (i + 1)th level; and Ai is the self-similarity 
coefficient. One can use ls as Li, and the distance between the clusters, as Li+l [14] 

Rcl = 1.8. lO-9(2Vh/F) -U3, m. (5) 

Then 
= P t/l.. (6) 

Equations (4)-(6) allow one to determine values of F before and after flow. Figure 4 presents the curves 
of F (Kst) that correspond to the undeformed state (points 1 and 2) and to the state after flow (points 3 
and 4) for I~P-1 (points 1 and 3) and l~P-2 (points 2 and 4). The most characteristic difference between the 
relationships compared is a considerable increase in F on attainment of the flow limit. The simultaneous 
decrease in Vh and increase in F during polymer deformation up to the flow limit (Figs. 1 and 4) indicates 
decay of unstable clusters with a small value of F; as a result, for of, only stable clusters with a large value 
of F remain. The decay of unstable clusters causes mechanical devitrification of the loosely packed matrix, 
which explains the rubber-like behavior of polymers on a forced high-elasticity plateau (cold flow) [15]. 

Let us estimate, within the framework of the suggested model, the consumption of energy related to the 
decay of clusters under the action of an external load. The energy Ud required for association (dissociation) 
of a pair of segments in a cluster can be calculated using dislocation analogies [16]. Then the total energy 
required for flow deformation has the form 

V = V~AVh, (7) 

where AVh is the number of dissociating pairs of segments. On the other hand, the value of U can be determined 
from the stress-strain diagram assuming that it is approximately triangular up to the flow limit: 

U = (1/2) r (8) 
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Equating (7) and (8), we find a theoretical value of the flow limit a[ and compare it with the 
experimental value af (inset in Fig. 3). A good agreement between af f and crf means that the flow limit 
is actually determined by the energy of decay of unstable clusters. 

In conclusion, we again turn to the stability of a polymer under shear deformations, which is 
characterized by the quantity 1~ran. Figure 3 shows this quantity versus Vh, i.e., the degree of local order 
[6], for l~P-1 and I~P-2 (points 2 and 4). The presence of a one-to-one correspondence between 1~ran and Vh 
makes it possible to consider Vh a fundamental characteristic of an amorphous polymer, as is 1~ran for a solid 
body. 

Thus, the flow process of cross-linked polymers is described within the framework of the synergy of a 
deformed body, i.e., by the evolution of dissipative structures. Quantitative representation of the latter can 
be realized using the cluster model for the polymer structure in the amorphous state. 
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